Author Affiliations
Abstract
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
We report dispersion management based on a mismatched-grating compressor for a 100 PW level laser, which utilizes optical parametric chirped pulse amplification and also features large chirped pulse duration and an ultra-broadband spectrum. The numerical calculation indicates that amplified pulses with 4 ns chirped pulse duration and 210 nm spectral bandwidth can be directly compressed to sub-13 fs, which is close to the Fourier-transform limit (FTL). More importantly, the tolerances of the mismatched-grating compressor to the misalignment of the stretcher, the error of the desired grating groove density and the variation of material dispersion are comprehensively analyzed, which is crucially important for its practical application. The results demonstrate that good tolerances and near-FTL compressed pulses can be achieved simultaneously, just by keeping a balance between the residual second-, third- and fourth-order dispersions in the laser system. This work can offer a meaningful guideline for the design and construction of 100 PW level lasers.
100 PW level laser dispersion management mismatched-grating compressor 
High Power Laser Science and Engineering
2022, 10(6): 06000e38
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
2 University of Chinese Academy of Sciences, Beijing100049, China
3 ShanghaiTech University, Shanghai201210, China
In this paper, we report the recent progress on the $1~\text{PW}/0.1~\text{Hz}$ laser beamline of Shanghai Superintense Ultrafast Laser Facility (SULF). The SULF-1 PW laser beamline is based on the double chirped pulse amplification (CPA) scheme, which can generate laser pulses of 50.8 J at 0.1 Hz after the final amplifier; the shot-to-shot energy fluctuation of the amplified pulse is as low as 1.2% (std). After compression, the pulse duration of 29.6 fs is achieved, which can support a maximal peak power of 1 PW. The contrast ratio at $-80~\text{ps}$ before main pulse is measured to be $2.5\times 10^{-11}$. The focused peak intensity is improved by optimizing the angular dispersion in the grating compressor. The maximal focused peak intensity can reach $2.7\times 10^{19}~\text{W}/\text{cm}^{2}$ even with an $f/26.5$ off-axis parabolic mirror. The horizontal and vertical angular pointing fluctuations in 1 h are measured to be 1.89 and $2.45~\unicode[STIX]{x03BC}\text{rad}$, respectively. The moderate repetition rate and the good stability are desirable characteristics for laser–matter interactions. The SULF-1 PW laser beamline is now in the phase of commissioning, and preliminary experiments of particle acceleration and secondary radiation under 300–400 TW/0.1 Hz laser condition have been implemented. The progress on the experiments and the daily stable operation of the laser demonstrate the availability of the SULF-1 PW beamline.
laser amplifiers lasers titanium ultrafast lasers 
High Power Laser Science and Engineering
2020, 8(1): 010000e4

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!